
Loops and branching

Stata Self-Learning Course



Loops

• Loops are used to 

– repeatedly perform commands for different subgroups or variables

– Program iterative procedures (e.g. maximum likelihood estimators)

• Useful to keep dofile or program flexible

• Types of loops

– forvalues

– foreach (in/of)

– while

• Loops are time-intensive à only use when necessary

Loops

15Stata Self-Learning Course



foreach

• Foreach-loops can repeatedly perform commands over a list 

of items

• Syntax

foreach localname { in | of listtype} list {

commands referring to `localname’

}

• The list can be unstructured (in) or structured (of listtype)

• Command creates a local which equals an element of the 

specified list in every iteration

• Example: list country names and perform regressions 

separately for each country

Loops

16Stata Self-Learning Course



foreach – structured lists

• Advantage: allows typical abbreviations and shortcuts

• Types of structured lists

– local, global

– varlist (containing existing variables)

– newlist (containing variables to be created)

– numlist (containing numbers)

• specify list type in loop header and then list elements that 

belong to the list 

• Local and global are similar to unstructured list except for a 

minimal speed improvement

Loops

17Stata Self-Learning Course



forvalues

• Similar to foreach with structured number list

• Requires numbers to have equal distance and to be ordered

• Advantage: speed improvement

• Syntax

forvalues localname = range {

commands referring to `localname’

}

• Examples for range:

– 1(3)20 = 1, 4, 7, 10, 13, 16, 19

– 1/20 = 1,2,3,4,5,6,7,8,9,10,11,…,20

– 1 10 to 100 = 1,10,19,28,37,46,…,100 (increment by 10-1)

– 1 10: 100 = same as 1 10 to 100

Loops

18Stata Self-Learning Course



Nesting

• Different forvalues and foreach loops can be nested

• Example: creating a list of number and letter combinations

forvalues n = 1/3 {

foreach c in a b c {

display “`n’`c’”

}

}

• Result: 1a 1b 1c 2a 2b 2c 3a 3b 3c

Loops

19Stata Self-Learning Course



While

• Typically used in programming

• More flexible, easier to understand

• Define the stopping condition in the header of the loop

• Specify in the loop how to change the content of the local 

that is used in the condition

• Syntax example:

local n = 1

while `n’ <= 10 {

display `n’

local ++n

}

• While-loops are executed as long as the condition is true

Loops

20Stata Self-Learning Course



Branching I

• Specify actions that should be taken in case a certain 

condition is fulfilled

• Example

local obs = r(N)

if `obs’ >=100 {

some command

}

• The command within curly brackets is executed if the 

condition specified in the header is true

• Do not confuse with if-specifier

gen region= “Europe” if country== “Italy”

Branching

21Stata Self-Learning Course



Branching II

• Specify alternative actions that are performed if condition is not 

fulfilled

• Example

local obs = r(N)

if `obs’ >=100 {

command1

}

else {

command2

}

à Command 1 is executed if the number of observations is at least 100

à Command 2 is executed if the number of observations is less than 100

Branching

22Stata Self-Learning Course



Branching III – Nesting 

• Example

local obs = r(N)

if `obs’ >=100 {

if country[10] == “Italy” {

command1

}

}

à Stata first checks the number of observations

à Stata then checks whether observation number 10 is from Italy

Note: country is here a variable, not a local

Branching

23Stata Self-Learning Course


